Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Using NASA's Global‐scale Observations of the Limb and Disk (GOLD) imager, we report nightside ionospheric changes during the G5 super geomagnetic storm of 10 and 11 May 2024. Specifically, the nightside southern crest of the Equatorial Ionization Anomaly (EIA) was observed to merge with the aurora near the southern tip of South America. During the storm, the EIA southern crest was seen moving poleward as fast as 450 m/s. Furthermore, the aurora extended to mid‐latitudes reaching the southern tips of Africa and South America. The poleward shift of the equatorial ionospheric structure and equatorward motion of the aurora means there was no mid‐latitude ionosphere in this region. These observations offer unique insights into the ionospheric response to extreme geomagnetic disturbances, highlighting the complex interplay between solar activity and Earth's upper atmosphere.more » « less
-
Abstract A coronal mass ejection erupted from the Sun on 21 April 2023 and created a G4 geomagnetic storm on 23 April. NASA's global‐scale observations of the limb and disk (GOLD) imager observed bright equatorial ionization anomaly (EIA) crests at ∼25° Mlat, ∼11° poleward from their average locations, computed by averaging the EIA crests during the previous geomagnetic quiet days (18–22 April) between ∼15°W and 5°W Glon. ReversedC‐shape equatorial plasma bubbles (EPBs) were observed reaching ∼±36° Mlat (∼40°N and ∼30°S Glat) with apex altitudes ∼4,000 km and large westward tilts of ∼52°. Using GOLD's observations EPBs zonal motions are derived. It is observed that the EPBs zonal velocities are eastward near the equator and westward at mid‐latitudes. Model‐predicted prompt penetration electric fields indicate that they may have affected the postsunset pre‐reversal enhancement at equatorial latitudes. Zonal ion drifts from a defense meteorological satellite program satellite suggest that westward neutral winds and perturbed westward ion drifts over mid‐latitudes contributed to the observed latitudinal shear in zonal drifts.more » « less
-
Abstract The occurrence of plasma irregularities and ionospheric scintillation over the Caribbean region have been reported in previous studies, but a better understanding of the source and conditions leading to these events is still needed. In December 2021, three ground-based ionospheric scintillation and Total Electron Content monitors were installed at different locations over Puerto Rico to better understand the occurrence of ionospheric irregularities in the region and to quantify their impact on transionospheric signals. Here, the findings for an event that occurred on March 13–14, 2022 are reported. The measurements made by the ground-based instrumentation indicated that ionospheric irregularities and scintillation originated at low latitudes and propagated, subsequently, to mid-latitudes. Imaging of the ionospheric F-region over a wide range of latitudes provided by the GOLD mission confirmed, unequivocally, that the observed irregularities and the scintillation were indeed caused by extreme equatorial plasma bubbles, that is, bubbles that reach abnormally high apex heights. The joint ground- and space-based observations show that plasma bubbles reached apex heights exceeding 2600 km and magnetic dip latitudes beyond 28 ° . In addition to the identification of extreme plasma bubbles as the source of the ionospheric perturbations over low-to-mid latitudes, GOLD observations also provided experimental evidence of the background ionospheric conditions leading to the abnormally high rise of the plasma bubbles and to severe L-band scintillation. These conditions are in good agreement with the theoretical hypothesis previously proposed. Graphical Abstractmore » « less
-
Abstract This work conducts a focused study of subauroral ion‐neutral coupling processes and midlatitude ionospheric/thermospheric responses in North America during a minor but quite geo‐effective storm on September 27–28, 2019 under deep solar minimum conditions. Several prominent storm‐time disturbances and associated electrodynamics/dynamics were identified and comprehensively analyzed using Millstone Hill and Poker Flat incoherent scatter radar measurements, Fabry‐Perot interferometer data, total electron content data from Global Navigation Satellite System observations, and thermospheric composition O/N2data from the Global‐scale Observations of Limb and Disk mission. Despite solar minimum conditions, this minor storm produced several prominent dynamic features, in particular (a) Intense subauroral polarization stream (SAPS) of 1,000 m/s, overlapping with a deepened main trough structure. (b) An enhanced westward wind of 230 m/s and a significant poleward wind surge of 85 m/s occurred in the post‐SAPS period. (c) Large‐scale traveling ionospheric disturbances (TIDs) were generated and propagated equatorward across mid‐latitudes in the storm main phase. TID characteristics were significantly affected by SAPS, evolving into divergent propagation patterns. (d) SAPS was situated on the poleward edge of a considerable storm‐enhanced density structure. (e) The midlatitude ionosphere and thermosphere exhibited a prolonged positive storm effect in the main phase and beginning of recovery phase, with 5–10 TECU increase and 10%–30% O/N2enhancement for 12 h. This was followed by a considerable negative storm effect with 5–10 TECU and 20%–40% O/N2decrease. Results show that minor storm intervals can produce substantial mid‐latitude ionospheric and thermospheric dynamics in low solar flux conditions.more » « less
-
Abstract Following the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere‐thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global‐scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption‐induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14–17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X‐pattern in a limited longitudinal area between 20 and 40°W. (c) Thermospheric horizontal winds, especially the zonal winds, showed long‐lasting quasi‐periodic fluctuations between ±200 m/s for 7–8 hr after the passage of volcano‐induced Lamb waves. The EIA suppression and X‐pattern merging was consistent with a westward equatorial zonal dynamo electric field induced by the strong zonal wind oscillation with a westward reversal.more » « less
An official website of the United States government
